Canine Luteinizing Hormone, LH ELISA Kit from MyBioSource.com

Supplier Page

Supplier Page from
MyBioSource.com for
Canine Luteinizing Hormone, LH ELISA Kit

Get Pricing

Description

Introduction: Luteinizing hormone (LH, also known as lutropin) is a hormone produced by the anterior pituitary gland. LH is a glycoprotein. Each monomeric unit is a sugar-like protein molecule; two of these make the full, functional protein. Its structure is similar to the other glycoproteins, follicle-stimulating hormone (FSH), thyroid-stimulating hormone (TSH), and human chorionic gonadotropin (hCG). The protein dimer contains 2 polypeptide units, labeled alpha and beta subunits that are connected by two disulfide bridges: The different composition of these oligosaccharides affects bioactivity and speed of degradation. The biologic half-life of LH is 20 minutes, shorter than that of FSH (3-4 hours) or hCG (24 hours). The gene for the alpha subunit is located on chromosome 6q12.21. The LH beta subunit gene is localized in the LHB/CGB gene cluster on chromosome 19q13.32. In contrast to the alpha gene activity, beta LH subunit gene activity is restricted to the pituitary gonadotropic cells. It is regulated by the gonadotropin releasing hormone from the hypothalamus. Inhibin, activin, and sex hormones do not affect genetic activity for the beta subunit production of LH. LH levels are normally low during childhood and, in women, high after menopause. During the reproductive years typical levels are between 5-20 mIU/ml. In females, at the time of menstruation, FSH initiates follicular growth, specifically affecting granulosa cells. With the rise in estrogens, LH receptors are also expressed on the maturing follicle that produces an increasing amount of estradiol. Eventually at the time of the maturation of the follicle, the estrogen rise leads via the hypothalamic interface to the "positive feed-back" effect, a release of LH over a 24-48 hour period. This 'LH surge' triggers ovulation hereby not only releasing the egg, but also initiating the conversion of the residual follicle into a corpus luteum that, in turn, produces progesterone to prepare the endometrium for a possible implantation. LH is necessary to maintain luteal function for the first two weeks. In case of a pregnancy luteal function will be further maintained by the action of hCG (a hormone very similar to LH) from the newly established pregnancy. LH supports thecal cells in the ovary that provide androgens and hormonal precursors for estradiol production. In the male, LH acts upon the Leydig cells of the testis and is responsible for the production of testosterone, an androgen that exerts both endocrine activity and intratesticular activity such as spermatogenesis. The release of LH at the pituitary gland is controlled by pulses of gonadotropin-releasing hormone (GnRH) from the hypothalamus. Those pulses, in turn, are subject to the estrogen feedback from the gonads.

Principle of the Assay: The microtiter plate provided in this kit has been pre-coated with goat-anti-rabbit antibody. Standards or samples are then added to the appropriate microtiter plate wells with a Horseradish Peroxidase (HRP)-conjugated LH and antibody preparation specific for LH, and incubated. Then substrate solutions are added to each well. The enzyme-substrate reaction is terminated by the addition of a sulphuric acid solution and the color change is measured spectrophotometrically at a wavelength of 450 nm +/- 2 nm. The concentration of LH in the samples is then determined by comparing the O.D. of the samples to the standard curve